Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biol. Res ; 50: 17, 2017. tab, graf
Article in English | LILACS | ID: biblio-838975

ABSTRACT

Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetrasulfide (As4S4). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.


Subject(s)
Humans , Arsenicals/pharmacology , Sulfides/pharmacology , Acidithiobacillus thiooxidans/metabolism , Antineoplastic Agents/pharmacology , Arsenicals/metabolism , Arsenicals/chemistry , Sulfides/metabolism , Sulfides/chemistry , Apoptosis/drug effects , K562 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Toxicological Phenomena , Antineoplastic Agents/chemistry
2.
Indian J Exp Biol ; 2015 Jun; 53(6): 388-394
Article in English | IMSEAR | ID: sea-158519

ABSTRACT

The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM-11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 °C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Industrial Waste/analysis , Nickel/isolation & purification , Petroleum , Proteobacteria/classification , Trace Elements/isolation & purification , Trace Elements/metabolism
3.
Electron. j. biotechnol ; 10(4): 514-520, oct. 2007. ilus, graf
Article in English | LILACS | ID: lil-504123

ABSTRACT

Emissions of hydrogen sulfide (H2S) by industrial activities is frequent cause of corrosion and unpleasant odours. Treatment of gaseous emissions contaminated with H2S by biotrickling filters inoculated with single cultures of sulfur oxidizer bacteria exhibit several advantages over physicochemical methods, such as shorter adaptation times and higher removal ability. Biofilms of Thiobacillus thioparus and Acidithiobacillus thiooxidans have proved to exhibit high removal capacities, yet no comparative studies between them have been reported. This article reports the efficiency of biotrickling filters inoculated with T. thioparus and A. thiooxidans under similar conditions excepting the pH, that was the optimal for the bacterial growth, for the removal of H2S. The support was selected by determining the respirometric coefficients of the biomass. The maximum removal capacity of the biofilter inoculated with T. thioparus, operating within the range of pH (5.5-7.0) was 14 gS m-3 h-1, lower the value obtained for the biotrickling filter inoculated with A. thiooxidans; 370 gS m-3 h-1. Therefore, it is concluded that acid biotrickling filter inoculated with A. thiooxidans constitute the best strategy to remove H2S, with the advantage that the system not require an exhaustive pH control of the liquid media.


Subject(s)
Acidithiobacillus thiooxidans/metabolism , Biofilms , Hydrogen Sulfide/chemistry , Thiobacillus/metabolism , Biodegradation, Environmental , Biomass , Environmental Pollution/prevention & control , Filtration , Hydrogen-Ion Concentration , Industrial Waste , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL